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A B S T R A C T   

How people choose between options with differing outcomes (explore-exploit) is a central question to under
standing human behaviour. However, the standard explore-exploit paradigm relies on gamified tasks with low- 
stake outcomes. Consequently, little is known about decision making for biologically-relevant stimuli. Here, we 
combined placebo and explore-exploit paradigms to examine detection and selection of the most effective 
treatment in a pain model. During conditioning, where ‘optimal’ and ‘suboptimal’ sham-treatments were paired 
with a reduction in electrical pain stimulation, participants learnt which treatment most successfully reduced 
pain. Modelling participant responses revealed three important findings. First, participants’ choices reflected 
both directed and random exploration. Second, expectancy modulated pain – indicative of recursive placebo 
effects. Third, individual differences in terms of expectancy during conditioning predicted placebo effects during 
a subsequent test phase. These findings reveal directed and random exploration when the outcome is 
biologically-relevant. Moreover, this research shows how placebo and explore-exploit literatures can be unified.   

1. Introduction 

Understanding how humans learn about options available in their 
environment and make choices to achieve desirable outcomes has 
become a key focus of psychological research spanning cognitive psy
chology, associative learning, machine learning, health psychology, and 
behavioral neuroscience (Addicott, Pearson, Sweitzer, Barack, & Platt, 
2017; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Gershman, 
2018; Gittins, 1979; Navarro, Newell, & Schulze, 2016; Raisch, Birkin
shaw, Probst, & Tushman, 2009; Rottman, 2016; Smith & Tushman, 
2005; Wilson, Geana, White, Ludvig, & Cohen, 2014). One of the 
fundamental questions in this area, referred to as the ‘explore-exploit 
tradeoff’, concerns how individuals decide between sticking with (i.e. 
exploiting) options that they have already tested versus exploring other 
options with possibly different outcomes (e.g. Mehlhorn et al., 2015; 
Wilson et al., 2014). Such decisions are inherent in virtually every aspect 
of our lives, sometimes with life-threating consequences, for example, 
deciding which medical treatment to take when facing a major illness – 
the established treatment or the supposedly promising one that has 
recently entered the market. In parallel, research on the placebo effect 
has sought to understand how individuals’ beliefs about a treatment 

influence their actual experiences with the treatment (for review, see: 
Benedetti, 2008; Colagiuri, Schenk, Kessler, Dorsey, & Colloca, 2015; 
Finniss, Kaptchuk, Miller, & Benedetti, 2010; Geuter, Koban, & Wager, 
2017; Price, Finniss, & Benedetti, 2008). One of the strengths of research 
on the placebo effect is that it uses genuine outcomes, such as pain and 
nausea, and therefore has high external validity in terms of the outcomes 
that are being experienced. Biologically-relevant stimuli of this type, 
such as pain, have been employed in decision making and choice par
adigms that explore how aversive reinforcers impact the learning and 
decision making process (e.g. Roy et al., 2014; Seymour, Daw, Roiser, 
Dayan, & Dolan, 2012; Wang, Lee, O’Doherty, Seymour, & Yoshida, 
2018; Wimmer & Büchel, 2020). For example, Wang et al. (2018) have 
modelled whether habit and rule-based decision making systems are 
engaged to avoid pain, demonstrating greater fluidity in the switching of 
control between systems in the case of aversive stimuli. Similarly, Roy 
et al. (2014) have investigated brain activity associated with prediction 
error signals generated during the avoidance of one of two options 
resulting in a greater probability of pain. However, none of these studies 
are explicitly concerned with the development of placebo analgesia. 
Conversely, a review of the placebo literature reveals that research in 
this area has typically employed passive designs that do not involve 
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choice. This is with the exception of a group of studies, reviewed in the 
sections below, that explore a single choice of treatment, or choice over 
timing of treatment (e.g. Bartley, Faasse, Horne, & Petrie, 2016; Brown, 
Fowler, Rasinski, Rose, & Geers, 2013; Geers et al., 2013; Geers, Rose, 
Fowler, & Brown, 2014; Rose, Geers, Fowler, & Rasinski, 2013; Rose, 
Geers, Rasinski, & Fowler, 2012; Tang, Geers, Barnes, & Colagiuri, 
2019). Hence, there currently exists a gap in our knowledge regarding 
how the decision making process impacts the placebo effect for multiple 
treatments over time. This includes whether placebo analgesia develops 
when an individual explores or exploits different treatments on offer and 
whether expectancies generated as a result of choice influence the pla
cebo effect when a treatment is no longer effective. 

In contrast, the primary goal of research on the explore-exploit 
tradeoff is to understand how people choose among options over time 
(e.g. Gershman, 2018). As outlined above, while research exists that has 
employed reinforcement learning paradigms in pain (e.g. Roy et al., 
2014; Wang et al., 2018), none have focused on testing the algorithms 
for search (e.g. the process through which individuals explore or 
exploit). As such, existing research on the explore-exploit tradeoff lacks 
ecological validity because it typically has involved artificial scenarios 
involving gamified points or small monetary rewards. The types of 
gamified points and small monetary rewards employed in typical 
explore-exploit paradigms are likely much less motivating and biologi
cally relevant than outcomes like pain. Further, while the subjective 
value of points and monetary rewards may change, e.g. gain vs. loss 
framing and contrast effects (e.g. Tversky & Kahneman, 1981), such 
processes are distinct from the placebo effect, whereby expectancies 
directly change perceptual experiences, such as pain (Wiech, 2016; 
Wiech, Ploner, & Tracey, 2008). As a consequence, explore-exploit 
paradigms have not explored whether and how outcomes can be 
modulated though expectation-driven placebo processes. 

In the current study, we aimed to integrate these two traditionally 
disparate research areas, by developing an exploit-explore placebo pain 
paradigm to understand how individuals make decisions about options 
that have genuine physiological consequences, and to understand how 
the placebo effect plays out in a dynamic explore-exploit situation. 

1.1. Overview and standard paradigms 

1.1.1. The placebo effect 
The placebo effect occurs when treatment cues themselves influence 

patient outcomes (i.e., it is the belief that one is receiving a particular 
treatment that leads to the outcome rather than the efficacy of the 
treatment itself). Expectancy is considered a central mechanism of the 
placebo effect and can arise from both instruction and learning processes 
(including explicit instruction, social observation, and Pavlovian con
ditioning; Colagiuri, Schenk, et al., 2015; Price et al., 2008; Stewart- 
Williams & Podd, 2004). A large body of evidence has shown that 
placebo-induced expectancy can influence subjective, psychophysio
logical, and neurobiological outcomes (e.g. Benedetti, Amanzio, Baldi, 
Casadio, & Maggi, 1999; Colagiuri & Quinn, 2018; Geuter, Eippert, 
Hindi Attar, & Büchel, 2013; Jepma & Wager, 2015; Montgomery & 
Kirsch, 1997). 

One of the most frequently employed paradigms for studying the 
placebo effect, and the one that we build upon here, involves 
experimentally-induced pain (Au Yeung, Colagiuri, Lovibond, & Col
loca, 2014; Bąbel et al., 2017; Colagiuri & Quinn, 2018; Colloca & 
Benedetti, 2009; Colloca, Petrovic, Wager, Ingvar, & Benedetti, 2010; 
Colloca, Sigaudo, & Benedetti, 2008; Voudouris, Peck, & Coleman, 
1985). As shown in Row 1 of Fig. 1, this paradigm typically involves two 
phases: conditioning and test. Participants are given a bogus treatment, 
such as a sham transcutaneous electrical nerve stimulation (TENS) de
vice, and told it will reduce their pain. In the conditioning phase, the 
intensity of an electrical shock delivered on treatment trials (e.g. ‘TENS 
active’) is surreptitiously reduced compared to no-treatment trials (e.g. 
‘TENS inactive’). Participants therefore come to expect analgesia (pain 

relief) with treatment (i.e. supposed TENS activity). In the test phase, all 
shocks are delivered at equivalent intensity, irrespective of whether or 
not the treatment is applied. If participants continue to report less pain 
on treatment, relative to no-treatment trials, then this is considered 
evidence of a placebo effect. While this paradigm has yielded significant 
insight into the behavioral and neuropsychological underpinnings of the 
placebo effect, it is important to note that behaviour during the condi
tioning phase has seldom been used to predict the placebo effect at test 
and decision-making processes have been largely ignored. 

1.1.2. The explore-exploit tradeoff 
The explore-exploit tradeoff refers to situations in which an indi

vidual needs to choose between two or more options and learn from 
experience about the value and distribution of outcomes associated with 
their choices. It is generally expected that individuals transition from 
‘exploring’ the options (testing multiple options in order to identify the 
optimal choice) to ‘exploiting’ this choice to maximize positive out
comes (Mehlhorn et al., 2015). The typical paradigm for an explore- 
exploit study, as shown in Row 2 Fig. 1, involves three cyclic steps. 
First, the individual makes a choice between two or more options. 
Second, the outcome of that choice is experienced. Third, the outcome is 
integrated into the individual’s knowledge about the expected outcomes 
produced by each option. The cycle then starts over with the individual 
making another decision. 

There are many important questions in the explore-exploit literature 
such as how people handle the explore-exploit tradeoff in dynamic2 

situations (e.g. Biele, Erev, & Ert, 2009; Daw et al., 2006; Navarro et al., 
2016; Rottman, 2016; Yi, Steyvers, & Lee, 2009), how closely human 
performance matches optimal performance vs. heuristics (e.g. Lee, 
Zhang, Munro, & Steyvers, 2011; Steyvers, Lee, & Wagenmakers, 2009; 
Yi et al., 2009), or how people come to form expectations of future 
outcomes from past experiences and whether they are biased by indi
vidual past experiences (e.g. Bornstein, Khaw, Shohamy, & Daw, 2017). 
In the following sections, we focus on two as yet untested questions 
spanning the explore-exploit and placebo literatures. The first concerns 
the role of placebo effects during the explore-exploit task, and how this 
impacts the strength of the placebo effect at test (i.e. where participants 
no longer have control over which treatment they receive). The second 
concerns how people come to choose between different treatment op
tions on offer. 

1.2. Question 1: placebo effects while navigating an explore-exploit 
challenge 

One of the main goals of this research was to test for a cyclic process 
(expectations on pain, and pain on expectations) during the condition
ing phase, which would provide evidence of a placebo effect during 
conditioning. Below we discuss the importance of this process within 
both placebo research and explore-exploit research. As the placebo 
literature has seldom focused on how behaviour occurring during con
ditioning phase can modulate the placebo effect at test, a secondary aim 
was to bridge this open question. 

1.2.1. Placebo research 
Existing placebo conditioning research has focused almost exclu

sively on the test phase. During this phase, the primary measure of the 
placebo effect is whether participants report different levels of pain for 
the treatment (e.g. ‘TENS active’) vs. no treatment (e.g. ‘TENS inactive’) 
conditions, despite the intensity of the shock (or other nociceptive 

2 Here we are focusing specifically on explore-exploit tasks that are ‘static’ in 
the sense that the outcomes associated with the choices are stationary over 
time. In dynamic explore-exploit tasks, the outcome associated with each choice 
can change over time, meaning that the learner must continually explore other 
options to see which option produces the best outcome now. 
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stimulus) delivered being equivalent. One recent study (Jepma, Koban, 
van Doorn, Jones, & Wager, 2018) analyzed the test phase in greater 
depth and demonstrated that, on a trial-by-trial basis, expectancy pre
dicts subsequent pain, and the experienced pain predicts subsequent 
expectancy. This influence is depicted in the test phase of the 
conditioning-based placebo paradigm cell in Row 1 Fig. 1. This feedback 
loop is believed to explain the often-claimed persistence of the placebo 
effect even when – in the test phase – participants are receiving shocks of 
equal objective intensity (Anchisi & Zanon, 2015; Büchel, Geuter, 
Sprenger, & Eippert, 2014; Jepma et al., 2018; Wiech, 2016). 

However, placebo effects do not only occur for inert treatments; they 
have also been demonstrated in the case of active treatments, such as 
enhancing the efficacy of morphine (Benedetti et al., 2003). As a 
consequence, the same recursive processes that drive the placebo effect 
during the test phase should also exist during the conditioning phase, 
when there really is a difference in the outcomes associated with the 
treatments. At present, however, such a feedback loop remains untested; 
thus, one main goal was to test for evidence of a placebo effect during 
conditioning. 

Because this placebo effect process during conditioning has not been 
studied before, another goal was to test whether the magnitude of the 
placebo effect during conditioning predicted the magnitude of the 
standard way of measuring the placebo effect at test. If so, this would 
provide evidence of convergent validity, that this new way of measuring 
the placebo effect during learning is related to the standard measure of 
the placebo effect and is therefore likely to be tapping into the same 
underlying process. 

1.2.2. Explore-exploit research 
Another question in explore-exploit research, aside from choice, has 

to do with the role of expectations. Expectations are believed to play an 
critical role in how people learn to navigate the explore-exploit tradeoff. 
Reinforcement Learning (RL) models broadly assume that learners use 
their current expectations to make predictions about the future, and 
then update these expectations through an error-correcting learning 
algorithm, often called the Delta learning rule. Eq. (1) provides a simple 
version of the error correcting algorithm in the Rescorla-Wagner model 
(Rescorla, 1972), though the same fundamental idea applies to all RL 
models such as those cited later on in this paper. Q is the current asso
ciative strength, or in other words, the expectation. r is the outcome or 
experience on a given trial. α is the learning rate parameter, and ΔQ is 
the change in the associative strength due to the new experience. 

∆Q = α[r − Q] (1) 

RL models assume that the experienced outcomes are objective. 
However, in stark contrast, placebo-based research assumes that ex
pectations bias the experience of outcomes. Imagine an extreme situa
tion in which the placebo effect is so strong, that expectations bias the 
experiences so that the experiences are perceived as exactly in line with 
the expectations. In this case, the experience minus expectations term 
would be zero, producing no learning. Of course, we do not expect such 
an extreme placebo effect. Imagine instead that the experience (r) is 
perceived as the weighted average of the true experience (r) and the 
expectation (Q). We use p to denote the weighted average term – it 
stands for ‘placebo’. When p = 1, the current experience is entirely 
driven by the prior expectation (Q), whereas when p = 0 there is no 

Fig. 1. Comparison of typical conditioning-based placebo research (Paradigm A), typical explore-exploit research (Paradigm B), and the current study (Paradigm C), 
which is an amalgam of the two. The image depicts both the hypothesised theoretical underpinnings of each paradigm as well as the typical experimental design 
associated with each. We test the links outlined in our theoretical model (Paradigm C) in the results section and present a high-level summary of the findings in Fig. 6. 

K. Barnes et al.                                                                                                                                                                                                                                  



Cognition 214 (2021) 104753

4

placebo effect and the experience is entirely determined by the objective 
stimulus (r). We can add this weighted version of the experience (λ) into 
Eq. (1), like in Eq. (2), which simplifies to Eq. (3). 

∆Q = α[((1 − p)r+ pQ ) − Q ] (2)  

∆Q = α(1 − p)[r − Q] (3) 

As can be seen in Eq. (3), when there is a complete placebo effect and 
the current experience is entirely driven by the prior expectation (p = 1) 
no learning occurs ΔQ = 0. And when there is no placebo effect (p = 0), 
Eq. (3) is equivalent to Eq. (1). If there is an intermediary placebo effect 
(e.g., p = .5), then learning proceeds at a slower pace (.5α). 

In summary, this analysis shows that the standard RL algorithm is in 
fact compatible with a placebo effect during learning whereby the pla
cebo effect would slow down learning. This process of sequential 
learning with a placebo effect is depicted in Fig. 2. 

However, research on the exploration-exploitation tradeoff (and RL 
more generally) typically involves gamified points or small monetary 
rewards. Such outcomes, presented as numbers, leave little room for bias 
by expectations, and in this setting the biasing role of prior expectations 
have rarely been studied (but see: Luhmann & Ahn, 2007, 2011; Marsh, 
2009). However, many real-world outcomes such as physiological, 
emotional or behavioral outcomes are known to be modulated by ex
pectancies (e.g. Tracey, 2010; Wiech, 2016). Therefore in the current 
research, we used pain as the outcome, which introduces the possibility 
of a placebo effect during an explore-exploit task, i.e. a placebo effect 
during learning. 

1.3. Question 2: how people choose between options 

1.3.1. Placebo effect research 
At present, little is known about the development of the placebo 

effect in situations in which participants make choices about their 
treatment dynamically over time. As previously outlined, studies on the 
placebo effect that have involved choice have studied the role of making 
a single choice between two medications on the size of the placebo effect 
(e.g. Bartley et al., 2016; Brown et al., 2013; Geers et al., 2013; Geers 
et al., 2014; Rose et al., 2012; Rose et al., 2013), or have explored when 
to initiate a (placebo) treatment relative to no treatment (Tang et al., 
2019). As a consequence, little is known about instances where partic
ipants have the opportunity to decide whether to initiate different 
treatments. 

Understanding the role of choice in the placebo effect is critical from 
a practical perspective. First, for prescription medications, many 

patients choose not to take their medications as prescribed (Cutler & 
Everett, 2010; Osterberg & Blaschke, 2005). Second, for over the 
counter or ‘as needed’ medications that people self administer, little is 
known about how people choose between treatments. And third, the 
market for complementary and alternative medicine therapies, which 
individuals pay for despite minimal evidence of efficacy, is very large 
(Barnes, Bloom, Nahin, & Stussman, 2009). Understanding the role of 
choice in the placebo effect can help shed light on the recursive pro
cesses that are believed to unfold as people try out and evaluate thera
pies of varying efficacy (Rottman, Marcum, Thorpe, & Gellad, 2017). 

Understanding the role of choice in the placebo effect is also critical 
from a theoretical perspective. Research on illusory correlation shows 
that people can develop false beliefs about the efficacy of a treatment, 
which can be exaggerated when they have control (Blanco, Matute, & 
Vadillo, 2011; Bott & Meiser, 2020) and research on the placebo effect 
shows that expectations can shape participants’ experiences with a 
treatment. Together, this sets up the possbility of a feedback loop: ex
pectations about treatments influence choices of treatments, choices of 
treatment influence an individual’s experiences, and these experiences 
then influence expectations. 

In sum, placebo research provides little insight into choice and 
therefore lacks a connection to many real-world situations in which 
people make dynamic decisions intended to maximize the benefits and 
minimize the harms. In the current study, by modifying a placebo con
ditioning paradigm to allow participants to choose between treatments, 
we were able to use computational frameworks from the explore-exploit 
literature to understand how participants chose to test a given treatment 
at a given time. 

1.3.2. Explore-exploit research 
Gershman (2018, 2019) recently laid out an elegant way to analyze 

how people choose among options in explore-exploit tasks. This 
framework for analyzing choice is powerful because it cleanly distin
guishes three distinct types of exploratory behaviour that map onto 
some of the most paradigmatic RL algorithms. Furthermore, each of 
these algorithms corresponds to easy to understand and compelling 
search behaviors. 

The fundamental question addressed by these different search algo
rithms is whether and how the learner makes use of uncertainty about 
the outcomes of the available options when choosing among them 
(Gershman, 2018; Gershman & Tzovaras, 2018; Wilson et al., 2014). 
Here, we explain the theories in an intuitive and non-technical way. For 
technical details we refer the reader to the appendix, and also to 

Fig. 2. Updating equation, conceptual model, and learning curves, for a sequential model of learning with a placebo effect included.  
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Gershman (2018). 

1.3.3. Simple random exploration 
In random exploration algorithms, the choices do not depend on the 

relative uncertainty about the two options. According to the simplest 
type of random exploration, on each trial t, people tend to choose the 
option that they believe to be better; their choices in favor of one option 
over another are related to the difference in the expected rewards of the 
options, labelled V, which reflects an attempt to exploit the better op
tion. Technically, the choice function uses the softmax function which, 
similar to logistic or probit regression, ensures that the probably of a 
given choice lies in the probability space 0 to 1 (e.g. Daw et al., 2006). 
Since choice behaviour is not deterministic, this is equivalent to saying 
that there a degree of random noise in this decision. This sort of 
exploration is called ‘random’; the learner tries to exploit the option that 
produces the better rewards, but also explores randomly to a certain 
extent. 

1.3.4. Thompson sampling 
Another, more sophisticated type of random exploration is called 

Thompson Sampling (Thompson, 1933). Thompson sampling draws a 
random sample from each of the posterior distributions for the available 
choices, and then picks the action with the highest sampled value 
(Russo, Roy, Kazerouni, Osband, & Wen, 2018). In the specific case in 
which there are only two choices and the posterior is Gaussian, as in the 
current study, the choice can be defined based on a ratio of V (the dif
ference in the posterior value of the two options) over the total uncer
tainty (TU); V/TU (as derived in Gershman, 2018). For Gaussian 
distributions, TU is the square of the sum of the variances of the ex
pectations of the two options. The variance of the expectation of each 
option decreases every time that option is chosen, thus, the most 
important feature of TU is that it decreases monotonically over the trials. 
Furthermore, it decreases faster at the beginning of learning. 

For Thompson sampling, the ratio V/TU is the only predictor of 
choice. At the beginning of learning, when TU is high, V/TU is low, 
which predicts that the learner would not be able to distinguish between 
the two options well and choice would largely be random. As experience 
accumulates, TU decreases and V/TU increases, which predicts that the 
learner would have a stronger preference for the option with the better 
posterior mean (reflected in V). In sum, in simple random sampling even 
after many observations there is still randomness in every choice and the 
amount of randomness stays the same over time. In contrast, in 
Thompson sampling, the amount of randomness decreases as total un
certainty decreases – which happens with each additional sample that is 
experienced. This distinction is distilled in Situations 1 and 2 in Table 1. 

1.3.5. UCB 
A second set of theories involves ‘directed’ exploration; exploration 

is guided by the relative uncertainties about the two options. One type of 
directed exploration, embodied in the Upper Confidence Bound (UCB; 
Auer, Cesa-Bianchi, & Fischer, 2002) reinforcement learning algorithm, 
can be summarized as optimism in the face of uncertainty: the learner 
tends to choose options that they are more uncertain about (Relative 
Uncertainty; RU), in addition to preferring options that have better ex
pected rewards (V). If the learner is more uncertain about Option A than 
Option B, but the average expectation of the two are the same, they will 
tend to pick A. This preference for ‘relative uncertainty’ is captured as 
the RU parameter in the choice model, which is simply the uncertainty 
of one choice minus the uncertainty of the other. Because the uncer
tainty of each option decreases each time it is chosen, RU is a function of 
the relative number of times that each option has been chosen. 

For example, if a learner chooses A on Trial 1, the uncertainty will be 
much higher for B, leading to a strong preference for B on Trial 2. If the 
two options have been chosen the same number of times, there is no 
preference between the options. Near the end of learning, if Option A has 
been chosen one more time than Option B, Option B is slightly preferred 

for the next trial, but the strength of this preference is weaker than at the 
beginning of learning because uncertainty decreases faster at the 
beginning of learning. Because UCB is determined by both RU and V, 
and because the magnitude of RU decreases with experience, V comes to 
play a larger role over time. In sum, one way to think about UCB is that it 
predicts a higher rate of alternation between options at the beginning of 
learning. 

Thompson sampling and UCB are similar in that Thompson sampling 
decreases exploration as total uncertainty decreases whereas for UCB 
sampling decreases exploration as relative uncertainty decreases. 
Therefore, both predict declining exploration and increasing exploita
tion of the better option over the course of learning. However, Gershman 
(2018, 2019) pointed out that these two strategies are behaviourally 
dissociable. In Thompson sampling high total uncertainty leads to more 
of a random choice, but in UCB high relative uncertainty leads to a 
directed choice to further test the option with higher uncertainty. 

1.3.6. Alternation vs. perseveration 
The prior three sections laid out reinforcement learning algorithms. 

Here we discuss a fourth tendency that can potentially influence par
ticipants’ choices; a habit to alternate. The degree of alternation 
(switching) vs. perseveration (making the same choice as the past 
choice) has in some literatures been used as a way to measure the degree 
of exploration vs. exploitation (Erev, 2010). In other research, the de
gree of alternation has been studied since exploring with high alterna
tion rates can help the learner disconfound their choices from 

Table 1 
Summaries of the four sampling algorithms. The four rows provide and four 
situations that distinguish the four sampling algorithms. This table presents a 
situation in which there are two choices, A and B.  

Situation Simple 
(Random): 
V 

Thompson 
(Random): 
V/TU 

UCB 
(Directed): V 
+ RU 

Alternation 
(Directed): V 
- PC 

1. After one 
choice of A 
and then one 
choice of B. 
Assuming 
that V 
somewhat 
favors A. 

A > B due 
to V. 

A > B due to 
V. TU is 
high. 

A > B due to V. 
RU =
0 because both 
options chosen 
once. 

A > B; 
alternate 
back to A. 

2. Later in 
learning (e.g., 
after 
switching 
back and 
forth between 
A and B a 
number of 
times). 
Assuming 
that V 
somewhat 
favors A. 

Same as 
above. 

A> > B: 
stronger 
above 
because TU 
is now low. 

Same as 
above. 

Same as 
above. 

3. After one 
choice of A, 
assuming V =
0, the second 
choice would 
tend to be: 

A or B 
because V 
= 0. 

A or B 
because V =
0 and 
therefore V/ 
TU = 0. 

B > A because 
RU is higher 
for B than A. 

B > A 
because 
prior choice 
was A. 

4. After 
choosing A, 
then B, 
assuming V =
0, the third 
choice would 
tend to be: 

Same as 
above. 

Same as 
above. 

A or B because 
V = 0 and RU 
is the same for 
A and B since 
they were both 
chosen once. 

A > B 
because the 
prior choice 
was B. 

Note. V = difference in the posterior values of the two options. TU = total un
certainty. RU = difference in relative uncertainty for the two options. PC = prior 
choice. 
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fluctuations in the background (Rottman, 2016). And, in yet other 
research the alternation/perseveration rate has not been of primary 
interest but has instead been a search habit that was statistically was 
controlled for when uncovering other search strategies (Bornstein et al., 
2017). In fact, in most settings humans and non-human animals tend to 
perseverate, rather than alternate, and perseveration can be viewed as a 
way to minimize the complexity of action policies (Gershman, 2020). 

Here we want to call attention to another feature of alternation: its 
place as a type of directed exploration and its relation to the UCB al
gorithm. Directed exploration is defined by a tendency to test options 
that have more uncertainty. In the framework above, the amount of 
uncertainty monotonically decreases with the number of times that an 
option has previously been tested. Strict alternation (in which sampling 
is only determined by the prior choice, not V and the prior choice) 
therefore ensures that the learner always chooses the option that has 
been tested the fewest number of times, minimizing RU. Though UCB 
also incorporates RU, when two options have been chosen the same 
number of times previously, the RU component of UCB is zero, so UCB 
would would choose randomly (so long as V = 0). In contrast, strict 
alternation predicts the learner to alternate between choices even when 
the two options have been chosen the same number of times. This 
distinction is distilled in Situations 3 and 4 in Table 1. 

In sum, strict alternation effectively minimizes RU, so alternation 
could be viewed as a directed exploration strategy. Another interpre
tation of alternation is that it is a simple behavioral habit. Still, given 
that it happens to minimize RU for the Gaussian case, it can be viewed as 
a useful but simple heuristic. In our modelling, we used the subjects’ 
prior choice (PC) as a predictor of their current choice. Alternation 
would be a negative influence, and perseveration would be a positive 
influence. Strict alternation would involve making choices simply based 
on the opposite of the prior choice (-PC). Alternatively and more real
istically, search would also involve some degree of exploitation, so 
would also involve V in the form of V – PC. 

1.3.7. Summary of search algorithms 
Table 1 provides a summary of the four search algorithms and shows 

the relations between the search algorithms and the underlying com
ponents. The two directed algorithms are guided by relative uncertainty 
(RU) whereas the two random algorithms are not. The appendix pro
vides more details about these search algorithms. 

One of the main questions in this research is which search algorithm 
(s) best approximates human search. Prior research has found that a 
hybrid model including both components of Thompson sampling 
(random) as well as UCB (directed) best explain human choice patterns 
(Gershman, 2018, 2019; also see Gershman’s, 2018 reanalysis of Wilson 
et al., 2014). Others have also found evidence for directed sampling 
based on relative uncertainty (Frank, Doll, Oas-Terpstra, & Moreno, 
2009; Speekenbrink & Konstantinidis, 2015), though some have not 
(Daw et al., 2006). Here we test this same question, in a much more high 
stakes and physiologically relevant setting. In addition, we also test 
whether alternation is also a component of search, above and beyond the 
RU component of UCB. If so, this would suggest two types of directed 
search. 

1.4. The current study 

Row 3 in Fig. 1 represents the proposed model of the current study, 
which integrates the placebo effect paradigm and the explore-exploit 
paradigm. In our exploit-explore placebo paradigm, as with traditional 
placebo paradigms, both the conditioning and test phase contained 
treatment and no-treatment trials. Critically, however, on treatment 
trials during the conditioning phase, participants were offered the 
choice of two different (sham) TENS treatments which they were told 
would decrease their pain. One of these was ‘optimal’ in the sense that it 
resulted in a larger surreptitious reduction in shock intensity, making it 
appear more effective, than the ‘suboptimal’ treatment. It should be 

noted that the ‘optimal’ and ‘suboptimal’ labels were not employed in 
the study. Instead the TENS treatments were labelled as ‘bipolar’ and 
‘monopolar’ (counterbalanced), with the participant having to discover 
which was the more effective. On no-treatment trials the TENS device 
was inactive and the shock was delivered at full intensity – considerably 
higher than either of the TENS treatment choices – making it seem as if 
both TENS treatments were better than no-treatment. During the test 
phase, participants were simply informed, without choice, about the 
trial type (i.e. ‘monopolar’, ‘bipolar’, ‘no treatment’) and all shocks were 
delivered at full intensity. 

We investigated two main questions. First, Row 3 Fig. 1 Predicts a 
cyclic process (Pain ⟶ Expectancy ⟶ Pain). In particular the Expec
tancy ⟶ Pain link is evidence of a placebo effect. We test, for the first 
time, if this placebo effect is found during conditioning. This would also 
be the first evidence of the placebo effect occurring in an explore-exploit 
setting, requiring a reconceptualization of the error-driven learning 
processes underlying RL. 

Second, based on the explore-exploit literature, we predicted a cyclic 
loop (Choice ⟶ Shock ⟶ Pain ⟶ Expectancy ⟶ Choice). We model 
each step along this process, but most importantly, we modelled choice 
using Gershman’s framework explained above. Identifying the algo
rithms by which people make choices will generalize the results from 
prior explore-exploit tasks to a more authentic setting, and will mark the 
first result of this kind in a study on pain and the placebo effect. 

In addition to these main questions, we also characterized partici
pants’ experiences of pain, expectancy, autonomic arousal, and choice, 
over the both the conditioning and test phases to understand the 
learning processes going on during the study; these analyses provide 
context for the main questions above. 

2. Methods 

2.1. Participants 

Sixty-two undergraduate students were recruited from the University 
of Sydney (52% female, mean age = 19.4 years, ±2.2 SD). Of these, 57 
participated for course-credit, while the remaining five were recruited 
from the general University population via a volunteer website and 
reimbursed AUD15. Participants were ≥18 years of age, fluent in En
glish, were not currently experiencing pain or taking analgesic medi
cation, had no history of heart problems, and had not participated in a 
similar study. The study was approved by the University of Sydney 
Human Research Ethics Committee. 

2.2. Cover story 

Participants were recruited under the pretense of a trial investigating 
the analgesic properties of transcutaneous electrical nerve stimulation 
(TENS) on pain. They were told that TENS involves passing a high- 
frequency, low-voltage current through the skin that stimulates the 
nerves to reduce pain (for example, see: Au Yeung et al., 2014). Par
ticipants were informed that two (bogus) types of TENS (‘monopolar’ 
and ‘bipolar’) were being investigated and that initial evidence suggests 
some individuals benefit from monopolar TENS, while others find bi
polar TENS more effective. Critically, participants were informed that 
the aim of the experiment was to discover which type of TENS works 
best to reduce their pain. In reality, sham TENS stimulation was 
employed meaning no participant received any form of real TENS or any 
other active pain relief. 

2.3. Design and procedure 

Table 2 shows a summary of the study design, with the primary 
manipulation being within-participants comparison of the two sham 
treatments (optimal and suboptimal) relative to no-treatment and each 
other. In the conditioning phase, participants had the opportunity to 
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learn about the supposed efficacy (reduced pain) of the sham treatments 
relative to no-treatment. This involved 3 blocks of 10 trials. In each 
block, on 2 randomly determined ‘non-treatment’ trials participants 
received a shock at 100% of their pain tolerance threshold, providing a 
comparative baseline against sham treatment. For the remaining 8 trials 
per block (24 trials overall), participants choose between the two sup
posed treatments labelled ‘monopolar’ and ‘bipolar’. These two ‘treat
ment’ labels were randomly assigned to either produce the greatest 
reduction in pain (‘optimal treatment’; M = 50% of pain tolerance) or a 
smaller reduction in pain (‘suboptimal treatment’; M = 60% of pain 
tolerance). This design makes it appear as if the sham TENS causes a 
reduction of pain relative to no-treatment, allowing participants to learn 
that both treatments are effective at relieving pain relative to no- 
treatment and that one treatment (‘optimal’) is more effective than 
the other (‘suboptimal’). 

The test phase was initiated immediately following conditioning, 
with no instruction, signal, nor break indicating a change in phase. 
However, change in incidental cues (i.e. the omission of choice) would 
have alerted participants to a difference in procedure. The test phase 
consisted of 10 triads of 3 trials. During this phase, participants could 
not choose the sham treatments, and within each triad of 3 trials, there 
was one no-treatment trial, one optimal trial, and one suboptimal trial, 
randomly ordered. All shocks were delivered at 100% pain tolerance 
irrespective of treatment trial. 

As part of the study, we also manipulated treatment variability by 
varying shock intensity in a between-groups design. Briefly, in the 
‘constant’ condition, each treatment led to a constant level of shock 
reduction, while in the ‘variable’ condition the level of shock associated 
with a particular trial type varied around the mean value for that type. 
We hypothesised that the Variable group might better reflect real-world 
scenarios in which improvement in outcomes often fluctuates over time. 
However, as there were minimal differences between the two groups on 
any of the outcome measures, details regarding this manipulation are 
included as supplementary materials for the sake of brevity. 

2.4. Procedure within each trial 

For No TENS trials during the conditioning phase, participants were 
presented with the text “Control trial. No TENS” on the computer screen 
to denote trial type. As depicted in Fig. 3, on sham treatment trials, 
participants could choose between ‘monopolar TENS’ or ‘bipolar TENS’ 
by pressing the 2 or 3 key on the computer keyboard (counterbalanced). 
This decision was not time-limited. Subsequently, a 10-s countdown was 
presented. On sham treatment trials, TENS stimulation commenced after 
one second had elapsed and terminated at the end of the countdown. On 
all trials, during seconds 3 to 7 of the countdown, participants were 
prompted to rate their expectancy for pain via a response meter (model 
MLT1601/ST; ADInstruments) that used a continuous scale, with an
chors marked at 0 (not), 50 (moderately), 100 (very). The countdown 
was followed by a fixation, ‘X’, on the screen for 0.5 s, which terminated 
with the shock. Participants subsequently rated their pain on a contin
uous computerized graphic rating scale from 0 (no pain) to 100 (very 
painful) using a mouse (as used by: Colagiuri & Quinn, 2018; Colagiuri, 
Quinn, & Colloca, 2015). Pain ratings were followed by a variable ITI of 
10–15 s. 

2.5. Apparatus 

2.5.1. The ‘TENS’ device 
The dummy TENS device consisted of a sham electrode attached to a 

stimulus isolator (Model FE180; ADInstruments, Bella Vista, NSW, 
Australia), and has been used frequently in previous research (e.g.Au 
Yeung et al., 2014 ; Colagiuri & Quinn, 2018 ; Tang et al., 2019). This 
was attached to the dorsum of the participant’s non-dominant forearm 
and produced light tactile vibration and a beeping sound when sup
posedly active. 

One TENS treatment was paired with a rapid activation of the elec
trode, the other was paired with a decelerated version of the same in
tensity (TENS stimulation: rapid vs. slowed). Slowed stimulation 
comprised17 x 2 Hz pulses of the TENS device. During rapid stimulation, 
a triplet of 5 Hz pulses was triggered every 1000 ms (pulse duration 400 
ms, 600 ms interval). TENS stimulation of this type has repeatedly been 
shown to have no unconditioned effect on pain (Au Yeung et al., 2014; 
Colagiuri & Quinn, 2018; Colagiuri et al., 2015; Tang et al., 2019). 
Calibration was run for both types of TENS to ensure that participants 
could discriminate between them, with the experimenter calibrating the 
tactile stimulation for each participant between 2 and 3 mA as needed 
for discrimination. 

2.5.2. Pain stimuli 
Pain was induced by electrocutaneous stimulation (see: Au Yeung 

Table 2 
Summary of experimental design (Nb. Percentages relate to the proportion of the 
participant’s pain tolerance level at which shocks were delivered).  

Conditioning (3 Blocks of 10 trials) Test (10 triads of 3 trials) 

2× No-Treatment (100%) 1× No-Treatment (100%) 
8× Choice of Treatment: 1× ‘Optimal’ Treatment (100%) 
-Optimal Treatment (50%) 1× ‘Suboptimal’ Treatment (100%) 
-Suboptimal Treatment (60%)   

Fig. 3. Graphical representation of what was presented on the 
screen during the experiment. On sham treatment trials, the 
participant chose either monopolar or bipolar TENS. This 
initiated a 10 s countdown, with the sham TENS activated at 
second 3 of the countdown and expectancies rated (via 
response meter) from seconds 3–7. After a fixation (0.5 s) the 
shock was delivered and the participant rated their pain. On 
control trials participants were presented with a screen that 
read “Control trial. No TENS” which did not require choice. No 
choice was available during test. Instead, participants were 
presented with a screen informing them which sham treat
ment had been selected.   
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et al., 2014; Colagiuri & Quinn, 2018; Colagiuri, Quinn, & Colloca, 
2015). Electric shocks were delivered via two Ag/AgCl electrodes con
nected to a stimulator (Model SHK1; Contact Precision Instruments, 
Cambridge, MA). Electrodes were attached to the dorsum of the non- 
dominant hand, approximately 1 cm apart. Shock stimuli consisted of 
100-μs square pulses with a frequency of 100Hz. The total duration of 
each shock was 0.5 s. 

Intensity of the pain stimuli was calibrated for each participant in a 
stepwise fashion (as outlined in: Au Yeung et al., 2014; Colagiuri & 
Quinn, 2018; Colagiuri, Quinn, & Colloca, 2015). This was achieved by 
incrementing a low-level shock-intensity until the pain-stimulus was 
perceived as painful, but tolerable. Once this level was determined, par
ticipants were asked to rate their pain on a scale ranging from 0 (no 
pain) to 10 (very painful). If participants reported a value less than 6, 
they were asked if they would be comfortable sampling a higher in
tensity shock. The 100% shock intensity set for the present experiment 
therefore obtained a subjective pain-rating ≥ 6 across participants. 

2.5.3. SCR 
Skin conductance was recorded using two Ag/AgCl electrodes were 

attached to the distal phalange on the index and middle fingers of the 
non-dominant hand. The data were digitized at 1000 Hz using a Pow
erLab DAQ device coupled with a Galvanic Skin Response amplifier 
(ADInstruments, Bella Vista, NSW, Australia) and stored on a computer 
using Labchart software (Version 7, ADInstruments). Skin conductance 
data were downsampled to 50 Hz for analysis and then log transformed 
to correct for skew (see: Colagiuri & Quinn, 2018). Two target periods 
were defined: 1) the peak amplitude in anticipation of pain (6 s prior to 
shock-onset); 2) the peak amplitude of the phasic response to pain (6 s 
post shock-offset). Both were baseline-corrected to the averaged 
response in the last 2 s of the ITI to account for drift. Due to technical 

failure, three participants had incomplete skin conductance data. These 
participants are removed from all analyses concerning autonomic 
arousal. 

3. Results 

Data files and analysis source code for all the results are available at 
the following link: https://osf.io/dzem4/ 

3.1. Univariate analysis of pain, expectancy, arousal, and choice during 
the conditioning phase 

During the conditioning phase, because participants could choose 
between the two sham treatments (except on no-treatment trials), there 
were variable numbers of observations of each treatment. For the pain, 
expectancy and skin conductance data, within-subjects ANOVAs with 
three levels (treatment: optimal, suboptimal, no-treatment) were run 
with contrast analysis employed to test for differences between the 
overall placebo effect (treatment vs. no-treatment) and the differential 
placebo effect (optimal vs. suboptimal treatment). This is consistent 
with typical analysis in the placebo literature (Au Yeung et al., 2014; 
Colagiuri & Quinn, 2018; Tang et al., 2019). Trial data were collapsed 
across conditioning as discrimination should be possible within the first 
few trials. The test was two-tailed, as were all others outlined below. 

Fig. 4 shows mean average pain ratings, expectancy ratings and skin 
conductance in the conditioning phase. We first assessed whether par
ticipants could discriminate between the optimal and suboptimal sham 
treatment relative to no-treatment during conditioning, which were 
paired with objectively different shock levels. As expected, participants 
reported less pain after receiving any sham treatment relative to no- 
treatment F(1,61) = 377.07, p < .001, ηp

2 = 0.86, as well as after 

Fig. 4. Summary of univariate analyses. All 30 trials of conditioning and test are averaged in the whole experiment graphs. In the test phase, the 30 trials are 
aggregated into the 10 blocks associated with each sham treatment. Participants could only choose treatment options in the conditioning phase. All error bars 
represent the standard error of the mean (SEM). 
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choosing the optimal (largest shock reduction) relative to the subopti
mal sham treatment (moderate shock reduction) F(1,61) = 132.46, p < 
.001, ηp

2 = 0.69. This confirmed that the shocks were discriminable and 
that the optimal treatment could be exploited to minimize the pain 
experienced. 

Next, we were interested in whether participants expected a differ
ence in pain to occur between the sham treatment choices, as this should 
be a precursor any placebo effect. As predicted, participants expected 
less pain on sham treatment relative to no-treatment trials F(1,61) =
113.51, p < .001, ηp

2 = 0.65, as well as after choosing the optimal 
relative to the suboptimal treatment F(1,61) = 38.10, p < .001, ηp

2 =

0.38. Anticipatory arousal, averaged across the conditioning phase, was 
found to be reduced in the six seconds prior to shock for both sham 
treatments relative to no-treatment F(1,58) = 15.80, p < .001, ηp

2 =

0.21, and was lower when the optimal treatment was chosen relative to 
suboptimal F(1,58) = 4.64, p = .035, ηp

2 = 0.074, indicating lower 
anticipatory autonomic arousal for sham treatments associated with less 
pain. Similarly, phasic arousal, averaged across the conditioning phase, 
was reduced for both treatments relative to no-treatment F(1,58) =
89.18, p < .001, ηp

2 = 0.61, and for the optimal treatment relative to the 
suboptimal F(1,58) = 42.70, p < .001, ηp

2 = 0.42. 
In analyzing the choices between the two sham treatment types in 

order to assess whether participants had started to exploit to some extent 
during conditioning, the data were assessed in two ways; for both ana
lyses, the 6 no-treatment trials were ignored. First, we assessed whether 
participants were more likely than chance to choose the optimal option 
within the last third of trials using a logistic regression with a by-subject 
random intercept. The last third of trials were selected for theoretical 
and practical reasons. Participants were required to learn which treat
ment was most effective and therefore any chance to exploit the optimal 
treatment should have emerged towards the end of the conditioning 
phase. As conditioning comprised three blocks of ten trials, splitting the 
conditioning phase into thirds evenly divided the available trials. By the 
third block of trials, participants were above chance in choosing the 
optimal treatment (M = 0.58, 95% CI = [0.54 to 0.63], p < .001), 
implying some amount of exploitation (Fig. 5). However, the fact that 
they were only slightly above chance, i.e. 58%, means that the amount 
of exploitation was not very high. Second, we assessed whether the rate 
of switching between the two sham treatments decreased over the 24 
trials; as a participant becomes increasingly confident of which option is 
more effective they should switch less. We used a random effects logistic 
regression, with by-participant random intercepts and a random slope of 
trial number to account for repeated measures. The correlation between 
the random intercept and slope was dropped for convergence. We found 
that the switch rate decreased significantly across trials (b = − 0.048, SE 
= 0.011, p < .001). However, despite the decrease, during the third 

block participants were still switching at a relatively high rate (60%), 
indicating that they were still engaging in some exploratory behaviour. 

In summary, the univariate analysis of the conditioning phase 
revealed that participants learnt to distinguish the two treatment op
tions from the no-treatment option and the optional from suboptimal 
treatment options. To this end, the participants started to exploit the 
optimal treatment; however, these changes over time were small. This 
could be a sign that discriminating between the efficacy of the two sham 
treatments was challenging. In addition, participants did not know that 
there were only 24 trials that they could choose, which may have sup
pressed exploiting if they thought that they would continue to explore 
for longer. 

3.2. Univariate analysis of pain, expectancy, and arousal during the test 
phase 

Analyses of pain, expectancy, and skin conductance were conducted 
to test for the presence of a placebo effect. The data were analyzed at the 
level of each triad (a triad consisted of one each of no-treatment, sub
optimal, and optimal trials), with contrast analysis to test for an overall 
effect and a differential effect. Interactions with linear trends over time 
was used to test for differences in the rate of extinction of the placebo 
effect (i.e. analysis was conducted at the level of each trial over the test 
phase). Fig. 4 also shows mean pain, expectancy, and autonomic arousal 
during the test phase, both averaged and across individual trials. 
Treatment type was pre-determined in the test-phase to allow us to 
examine the placebo effect so there is no choice data in this phase. 

Averaged across the test phase, participants reported lower pain 
during sham treatment trials than no-treatment trials, F(1,61) = 58.83, 
p < .001, ηp

2 = 0.49. As shock intensity was the same for sham treatment 
and no-treatment trials, this indicates there was a significant ‘overall’ 
(treatment vs. no-treatment) placebo effect. Further, participants re
ported lower pain during ‘optimal’ than ‘suboptimal’ treatment, F(1,61) 
= 20.51, p < .001, ηp

2 = 0.25, which we call a ‘differential’ placebo 
effect. Linear trend analyses across triads (i.e. over time) revealed that 
the linear trend interacted with sham treatment type (both treatments 
vs. no-treatment) suggesting that the overall placebo effect diminished 
over time, F(1,61) = 25.38, p < .001, ηp

2 = 0.29. The slopes for the 
optimal and suboptimal treatments were not significantly different, 
however, suggesting that the placebo effect for both sham treatments 
extinguished at a similar rate, F(1,61) = 0.59, p = .445, ηp

2 = 0.01. 
As with the pain ratings, during the test phase, participants reported 

lower expectancy for pain on sham treatment relative to no-treatment 
trials, F(1,61) = 89.89, p < .001, ηp

2 = 0.60 and lower expectancy for 
pain on optimal versus suboptimal treatment trials, F(1,61) = 19.21, p 
< .001, ηp

2 = 0.24. Linear trend analysis also revealed an interaction 

Fig. 5. Summary of sham treatment choice (optimal choice and switch rate). Given that analyses were logistic regressions, error bars are represented upper and 
lower 95% CIs rather than as the SEM (as depicted in Fig. 4). 
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with treatment type (treatment vs. no treatment) with expectancy for 
pain increasing over time on sham treatment trials, F(1,61) = 10.22, p =
.002, ηp

2 = 0.14, indicating extinction of expectancy for treatment vs. no 
treatment. As with pain itself, the slopes for expectancy in optimal and 
suboptimal treatments were not significantly different, F(1,61) = 1.92, 
p = .171, ηp

2 = 0.03, suggesting a similar rate of extinction of expectancy 
for the two sham treatments. 

Anticipatory arousal in the test phase was lower during sham treat
ment than no treatment trials, F(1,58) = 45.61, p < .001, ηp

2 = 0.44. This 
suggests that the expectation of pain reduction reduces autonomic 
arousal in anticipation of placebo treatment. No statistically significant 
difference in anticipatory arousal was observed between the two sham 
treatment types, F(1,58) = 0.97, p = .329, ηp

2 = 0.02. No interaction 
between sham treatment type and the linear trend over trials was 
observed for either the overall or differential placebo effect (all ps >
0.380) suggesting the anticipatory arousal may have been more resistant 
to extinction than pain and expectancy. 

Similar results were observed for the phasic response to the shock. 
Phasic arousal was lower during sham treatment trials compared to no 
treatment trials F(1,58) = 37.18, p < .001, ηp

2 = 0.39, demonstrating 
modulation of the autonomic response. No statistically significant dif
ference in phasic arousal was observed between the two sham treat
ments F(1,58) = 0.66, p = .422, ηp

2 = 0.01. No interaction between sham 
treatment type and the linear trend over trials was observed for either 
the overall or differential placebo effect (all ps > 0.640) suggesting 
limited extinction of this response. 

In summary, consistent with previous research, univariate analysis of 
the test phase confirmed a placebo effect for pain for sham treatment vs. 
no treatment accompanied by greater expectancies for reduced pain as 
well as lower anticipatory and phasic autonomic arousal, for which 
previous evidence has been more mixed (Colagiuri & Quinn, 2018; 
Jepma & Wager, 2015). Importantly, the analysis also demonstrated 
that participants could learn about subtle differences between two 
effective treatments whereby the optimal treatment elicited a larger 
placebo effect for pain than did the suboptimal treatment. This was 
accompanied by a difference in expectancy, though not anticipatory or 
phasic arousal. When sham treatment was compared to no treatment, 
both pain and expectancy appeared to extinguish over the test phase 
while arousal did not, suggesting differences in the trajectory of self- 
report and physiological indices in response to and in anticipation of 
the placebo effect over time. 

3.3. Integrating pain, expectancy, and choice to test the theoretical model 
of exploring vs. exploiting 

Fig. 6 shows a summary of the results in the form of an integrated 
pain, expectancy, choice model supported by our data. 

3.3.1. Modelling pain ratings 

3.3.1.1. Pain ratings within the conditioning and test phases. The first 
question in terms of modelling pain ratings was whether a participant’s 
expectancy on a given trial predicted their pain rating on that trial, as 
this would be evidence for a placebo effect both within the conditioning 
phase and test phase. In this regression, for the conditioning phase, we 
controlled for the intensity of the shock. We used multiple regression 
with by-participant random intercepts and random slopes for both 
predictors, and standardized all variables. For the test phase, all the 
shocks were the same so there is no need to statistically control for 
shock. A regression with a by-participant random intercept and random 
slope was used with standardized variables, dropping the correlation 
term between the intercepts and slopes for convergence. We used r2

NSJ 
from the r2glmm package in R as the effect size measure, which is 
appropriate for random effects models (Johnson, 2014). 

Fig. 6. High-level summary of results, where green ‘+’ sym
bols represent theoretical links confirmed by our analyses, 
while orange ‘-’ symbols represent statistically non-significant 
links. In the conditioning phase, the choice of treatment de
termines the shock, which influences the level of pain, which 
is aggregated into an expected level of pain for that sham 
treatment. The expectancies for the two treatments influence 
the choice of subsequent treatments, and the expectancy for a 
chosen treatment also recursively influences pain as a placebo 
effect. In the test phase, now all treatments have the same 
shock, and because the level of shock has zero variance, it is 
not connected statistically to any other variable. Also, par
ticipants no longer choose the treatment on a given trial. The 
pain is still aggregated into an expected level of pain for each 
treatment, and the expectancy for a given treatment recur
sively influences subsequent pain as a placebo effect. The 

expectancies at the end of the conditioning phase also influence the pain at the beginning of the test phase and expectancy at the beginning of the test phase. Please 
note that the paths represented in this figure are drawn from multiple analyses. As the model was not tested holistically, coefficients are not included. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)   

Table 3 
Regressions predicting: 3A) pain during conditioning and test; 3B) the placebo 
effect during triad 1 of the test phase for the differential and overall placebo 
effect; 3C) expectancy during conditioning and test. 3A and 3C are random ef
fects models and therefore have a different effect size (rp

2
NSJ) compared to 3B, 

which is a standard regression. All coefficients are standardized.  

3A) Regressions predicting pain Conditioning Phase Test Phase 

Predictor: B rp
2
NSJ B rp

2
NSJ 

Expectancy 0.29*** 0.127 0.35*** 0.163 
Shock 0.44*** 0.255 – –   

3B) Regressions Predicting Placebo Effect 
- Triad 1, Test Phase 

Differential 
Placebo 

Overall Placebo 

Predictor: B rp
2 B rp

2 

Expectancy Difference 0.45*** 0.186 0.31** 0.118 
Individual Difference Measure of Placebo 

Effect 
0.12 0.014 0.43*** 0.206 

Exploitation – Percent Optimal Choices − 0.06 0.004 – – 
Exploitation – Switch Rate 0.03 0.001 – –   

3C) Regressions Predicting 
Expectancy 

Conditioning Phase Test Phase 

Predictor: B rp
2
NSJ B rp

2
NSJ 

Optimal Choice (vs. No-TENS) − 0.29*** 0.017 − 0.28*** 0.027 
Suboptimal Choice (vs. No-TENS) − 0.23*** 0.011 − 0.22*** 0.017 
Prior Expectancy 0.33*** 0.114 0.29*** 0.084 
Prior Pain 0.36*** 0.111 0.35*** 0.128 

*p < .05. 
**p < .01 
***p < .001. 
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Table 3A presents the results of this analysis. As expected, the shock 
intensity on a given trial significantly predicted pain on that trial. 
However, most importantly, above and beyond shock, expectancy also 
significantly predicted participants’ pain ratings, with a large effect size, 
which is evidence of a placebo effect occurring on a trial-by-trial basis. 
This finding held for both the conditioning and test phases. This provides 
evidence for a link between expectancy and pain in each phase of our 
experiment as proposed in our theoretical model in Fig. 1C. 

3.3.1.2. Pain ratings across the conditioning and test phases. The second 
question regarding pain ratings was whether individual differences in 
the conditioning phase predict the placebo effect (i.e. the reduced 
perception of pain on treatment trials) during the first triad at test. 
Consistent with our previous research (e.g. Au Yeung et al., 2014; 
Colagiuri, Quinn, & Colloca, 2015), the first triad was chosen as it 
represents the strength of the placebo effect prior to any extinction 
having taken place (which was significant in this study). In this analysis 
we use conditioning phase data to predict the placebo effect (i.e. the 
reduced perception of pain on sham treatment trials) during test, both 
for the overall (treatment vs. no treatment) and for the differential 
placebo effect (optimal vs. suboptimal) via separate regressions. These 
regression results are presented in Table 3B. 

The first predictor was the difference in expectancy for pain relief: 
the difference in expectancy for sham treatment vs. no-treatment for the 
overall analysis, and the difference in expectancy for optimal vs. sub
optimal for the differential analysis) in the last third of conditioning 
trials. For the three participants who did not test the suboptimal choice 
in the last third, the most recent third in which the sham treatment was 
chosen was used instead. Theoretically, if participants come to expect a 
bigger difference during conditioning, that should predict a larger pla
cebo effect at test. For both analyses, this effect was significant 
(Table 3B). 

The second predictor was an individual difference measure of the 
size of the placebo effect during conditioning. The goal was to test 
whether the way of measuring the placebo effect in the prior section 
predicts this more traditional measure of the placebo effect. We 
extracted participant-level random effects of expectancy on pain during 
conditioning for the overall placebo effect (see Table 3A), and used the 
participant-level slopes to predict the placebo effect on the first test 
block. This individual difference measure was significant for the overall 
placebo effect, though not for the differential placebo effect (Table 3B). 
This provides some evidence that our analysis measuring the placebo 
effect during conditioning is predictive of the standard placebo effect 
measured at test (though only for treatment vs. no-treatment). In 
contrast, the amount of exploitation (optimal choice and switch rate) 
during the last third of conditioning does not predict the magnitude of 
the placebo effect (overall or differential) at the beginning of the test 
phase. 

Finally, we tested whether participants who ‘exploit’ more might 
exhibit a larger differential placebo effect – as engaging in exploitation 
behaviour could be a proxy for believing in a difference in efficacy, 
similar to expectancy difference. This measure was captured with the 
percent of optimal choices and the switch rate in the last third of con
ditioning trials. However, according to the theoretical model, choice 
does not directly affect pain; expectancy does. Therefore, a non- 
significant effect when controlling for expectancy is consistent with 
our model, though we did not run Bayesian statistics to test for evidence 
for a null effect. Indeed, there was not a significant effect of either of 
these two measures of exploitation during conditioning on the placebo 
effect at test (Table 3B). 

3.3.2. Modelling expectancy ratings 
We next tested how participants update their expectancy ratings for a 

given treatment, based on their expectancy prior to the last time they 
experienced that sham treatment and their pain rating after 

experiencing it (Table 3C). This was done to provide evidence for a link 
between Pain and Expectancy within both phases of the theoretical 
model and provide evidence for a sequential learning process, repre
sented by the circular Expectancy loops within each phase. 

In this regression, all variables were standardized. By-subject 
random intercepts and random slopes for prior expectancy and prior 
pain were used. Expectancy ratings for all three choices (no-TENS, 
optimal, and suboptimal) were included in this regression, and there are 
fixed effects for the optimal and suboptimal choices (no-TENS was the 
reference group). Due to difficulties with convergence, by-subject 
random slopes were not included for these choices, and the correla
tions between the random slopes was also dropped for convergence. 

As presented in Table 3C, participants’ expectancy ratings for the 
optimal and the suboptimal options were lower than for no-treatment. 
More importantly, their expectancy ratings were positively related to 
their prior expectancy as well as their prior pain rating from their most 
recent experience of that option. These results mean that when 
providing an expectancy judgment for a particular choice (e.g., subop
timal), participants’ expectancy rating is related to their most recent 
expectancy judgment for the same choice and their most recent expe
rience of pain associated with that choice. This analysis is generally 
consistent with a wide class of standard reinforcement-learning error 
updating models in which expectancies are updated as a combination of 
the prior expectancy and the prior experience. 

Finally, to confirm our theoretical model that predicts expectancies 
developed during conditioning will be carried forward to influence 
initial expectancies during test (dashed arrow, Fig. 1 Model C), we also 
directly correlated the difference in expectancy between the optimal and 
suboptimal treatment during the last third of conditioning with the 
difference in expectancy between treatments during the first triad to 
test. Results confirmed that expectancies developed during conditioning 
are associated with expectancies at the beginning of test, r(60) = 0.46, p 
= .001. 

3.3.3. Modelling choice 
Building on Gershman’s (Gershman, 2018, 2019) approach, we 

tested 12 models of choice (Table 4). Models 7–12 parallel Models 1–6, 
except they also include a predictor of the prior choice (PC); if the in
fluence of the prior choice on the subsequent choice is negative, it is a 
sign of alternation. Models 1 and 7 are the null model, which just has a 
by-subject random intercept. Within Models 2–6 and 8–12, we tested the 
three main models: the ‘pure random’ exploration model which only has 
V, the UCB model which has V and RU, and Thompson sampling, which 
has V/TU. In addition, we tested two other models. Mixture 2 has all 
three predictors from the Random, UCB, and Thompson models. Mixture 
1 has RU and V/TU but not V; we found that V and V/TU were highly 
correlated and felt that Mixture 1 was sensible as an alternative because 

Table 4 
Model fit scores of 12 models of choice behaviour.  

Number Model Name Predictors AIC BIC 

1 Null – 1955.3 1965.8 
2 Pure Random V 1947.8 1963.6 
3 UCB V + RU 1799.5 1825.8 
4 Thompson V/TU 1949.6 1965.4 
5 Mixture 1 RU + V/TU 1798.5 1824.9 
6 Mixture 2 V + RU + V/TU 1800.5 1832.1 
7 Alt. PC 1721.3 1742.3 
8 Alt. + Pure Random PC + V 1713.0 1739.3 
9 Alt. þ UCB PC þ V þ RU 1688.3 1725.2 
10 Alt. + Thompson PC + V/TU 1712.8 1739.1 
11 Alt. + Mixture 1 PC + RU + V/TU 1687.5 1724.3 
12 Alt. þ Mixture 2 PC þ V þ RU þ V/TU 1689.4 1731.5 

Note. V = difference in expected value. TU = total uncertainty. V/TU = V 
divided by TU. RU = relative uncertainty. PC = prior choice. Models in bold (9, 
11, and 12) are the best fitting models and Model 11 (bold and italics) is the 
absolute best. 
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it includes both V (through V/TU) as well as the two types of directed 
sampling. 

To conduct this analysis we ran a logistic regression with a probit 
link function with three predictors. The dependent variable was par
ticipants’ choice: 1 was the optimal choice and 0 was the suboptimal 
choice. In line with his approach, we used the Kalman filter equations to 
calculate V, RU, and V/TU. For details see the appendix, and also see 
Gershman (2018, 2019). 

Because of the repeated measures (24 choices per participant, minus 
the first for which they have no beliefs), we used a random effects model. 
We attempted to fit the maximal models with a random intercept and 
random slope for each of the predictors; however, we found that 
sometimes the models would not converge if there were random slopes 
for V and for V/TU. We found that by dropping the random slopes for V 
and V/TU and keeping the by-subject random intercepts and random 
slopes for PC and RU, all of the models would converge. This was done 
for all of the models, rather than on a model-by-model basis, to make the 
AIC and BIC scores more comparable by using the same random effects 
structure. 

Technically, Model 11 (Alternation + Mixture 1) had the lowest AIC 
and BIC (Table 4). This model suggests that the participants explored in 
both directed (PC, RU) and random (V/TU) ways. The influence of prior 
choice (PC) was negative, which captures a high alternation rate be
tween treatment options, b = − 0.92, SE = 0.12, p < .001, rp

2
NSJ = 0.065. 

The effect of relative uncertainty (RU) between the two choices was 
positive, b = 0.25, SE = 0.07, p < .001, rp

2
NSJ = 0.043, and so was the 

effect of the difference in expected value of the two choices normalized 
using the total uncertainty (V/TU), b = 0.26, SE = 0.09, p = .002, rp

2
NSJ 

= 0.011. However, some caution is required here, because when using 
Burnham and Anderson’s (2004) criteria for interpreting AIC, there 
were limited differences if fit between Models 9, 11, and 12. 

Still, stepping back and looking at patterns in all the models still 
produces a clear picture. First, it is very clear that all the models with 
alternation (Models 7–12), a type of directed sampling, fit much better 
than those without (1–6). Second, it is also very clear that the models 
with RU, another type of directed sampling, fit considerably better than 
similar models without RU; compare models 2 vs. 3, 4 vs. 5, 8 vs. 8, and 
10 vs. 11. In fact, a random effect regression model with alternation and 
RU, and random slopes for both, reveals a correlation of r = 0.24 be
tween the random slopes; participants who exhibited a stronger effect of 
alternation also exhibited a stronger effect of RU. Third, all the best 
fitting models (9, 11, and 12) have V, V/TU, or both. These components 
are the random sampling components. In sum, overall, there are clearly 
both aspects of directed and random sampling, there is just some 
remaining ambiguity with regards to V vs. V/TU. 

To summarize these findings in Fig. 5, we represented the influences 
on choice in two simplified ways. First, the alternation tendency is 
represented by a negative autocorrelation cycle. Second, the links from 
pain to expectancy to choice represent the V/TU and RU components of 
the computational model, which assume that participants use the pain 
experiences to develop representations of expectations of the two 
choices and representations of the relative and total uncertainty of these 
expectations. 

3.3.4. Summary of theory 
Fig. 6 presents a high-level summary of the findings of the study. 

Compared to Fig. 1 (Model C), all of the expected links were found 
(though note the caveat of the Expectancy ⟶ Choice link discussed 
below). Importantly, there are two cycles, one which captures a rational 
learning process during the conditioning phase (Choice ⟶ Shock ⟶ 
Pain ⟶ Expectancy ⟶ Choice), and one which captures the placebo 
effect feedback loop (Pain ⟷ Expectancy). 

4. Discussion 

The present study investigated how individuals come to expect that 

one treatment will be more effective than another and whether these 
expectancies drive their choice behaviour. Four novel findings emerged. 
First, the two sham treatments produced a placebo analgesic effect at 
test that varied as a product of the strength of the pain relief that each 
provided during conditioning, with the more effective treatment 
generating a larger placebo effect than the less effective treatment. 
Second, during both the conditioning and test phases, a recursive pla
cebo effect loop was observed - participants formed expectations based 
on their pain experiences, and their expectations modulated their sub
sequent experience of pain. Third, the strength of the placebo effect 
during the test phase was predicted by individual differences in expec
tancies generated during the conditioning phase. Fourth, we found clear 
evidence that participants use both relative uncertainty (RU; embodied 
in the UCB algorithm) for choosing which treatment to test, and also 
have clear evidence for an alternation tendency. Both of these can be 
viewed as types of directed exploration. 

Below we discuss the main implications of these findings for the 
relevant literatures. 

4.1. The recursive association between pain and expectancy 

We found clear evidence of placebo analgesia in our modified 
paradigm, with the optimal treatment capable of producing stronger 
placebo analgesia than the suboptimal treatment. Further, modelling 
confirmed an anticipated expectancy↔pain feedback loop: expectancy 
predicted subsequent pain on a trial-to-trial basis, and pain predicted 
subsequent expectancy. This is consistent with the placebo literature 
(Anchisi & Zanon, 2015; Büchel et al., 2014; Jepma et al., 2018; Wiech, 
2016 - but see Au Yeung et al., 2014, and Colagiuri & Quinn, 2018, for 
exceptions), but previous research has not been designed to explore the 
association during conditioning, i.e. while learning is initially occurring, 
nor when participants have control over treatment selection. Current 
results therefore extend the literature by demonstrating that the ex
pectancy ↔ pain feedback loop is an ongoing dynamic process already 
present during conditioning. As such, findings indicate that in cases 
when individuals make choices about biological-relevant outcomes, the 
expectancies driving those choices can actually interact with what they 
experience via the placebo effect. This marks an important extension of 
traditional exploit-explore designs. Specifically, no opportunity for the 
individual’s expectancy to actually influence the outcomes experienced 
has existed in previous research. 

As detailed in the introduction, the evidence for a placebo effect 
during conditioning ties in closely with standard accounts of reinforce
ment learning. If the perceived outcome (pain) is a linear weighting of 
the expectancy and the objective outcome (shock), this effect can be 
modelled as simply a slower learning rate, compared to if the outcome is 
experienced objectively without any bias from expectancy. However, 
peering under the hood reveals a secondary recursive placebo process of 
expectancies influencing the perception of pain. This means that when 
trying to learn about and maximize benefits and minimize harms in a 
biologically-relevant explore-exploit setting, it is not just the objective 
outcomes that matter, but also how the outcomes are perceived. This is 
important for placebo researchers as well as cognitive scientists more 
generally. Not only do our results outline the algorithmic processes 
engaged during decision making process for pain, they also demonstrate 
that choice-related expectancies generated during decision making can 
directly modulate pain perception and autonomic responsivity. Given 
that expectancies generated as a product of treatment choice are likely 
to form naturally during the treatment process, this study provides first 
evidence that these choice-elicited expectancies are directly relevant to 
the generation of the placebo effect. Furthermore, these results 
demonstrate that this placebo effect develops each time an individual 
makes a treatment choice (expectancy↔pain feedback loop). 
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4.2. The role of expectancy and choice during conditioning on the placebo 
effect at test 

We also sought to determine how expectations surrounding pain and 
choice behaviour during conditioning influence the placebo effect at test 
(i.e. when participants no longer had choice over their treatment). Re
sults demonstrate that individual differences in the placebo effect during 
conditioning (i.e. the strength with which expectancy predicts pain) is 
associated with the magnitude of the placebo effect at test. To the best of 
our knowledge, the recursive association between expectancy and pain 
has not been tested during the conditioning phase before. In the current 
study, this finding is extended further to demonstrate that expectancy- 
based modulation of pain outcomes that develop during the learning 
process (i.e. when treatments are effective) can directly impact the 
placebo effect when the treatment no longer contains any ‘active’ 
analgesic property. This effect was only apparent when the overall 
placebo effect was considered (treatment vs. no treatment), rather than 
the differential effect (optimal vs. suboptimal treatment); however, in 
this study the difference in pain between treatment vs. no-treatment was 
much larger than between the two treatments. Consequently, null results 
may be driven by this smaller difference. 

Only expectancies, and not choice behaviour (i.e. switch rate and 
optimal choice), predicted the placebo effect at test. This is consistent 
with the predicted theoretical model where overall expectancies 
generated throughout the course of the experiment, rather than specific 
patterns of choice behaviour, are associated with the placebo effect. 
However, levels of exploitation were low and it cannot be ruled out that 
the limited strength of these variables may have obscured any associa
tion with the placebo effect that might exist. 

4.3. Exploratory behaviour and choice for biologically-relevant outcomes 

Previous research employing artificial outcomes has reported that 
people use both directed and random exploration (Gershman, 2018, 
2019). In those studies, individuals tend to test options that they have 
tested fewer times in the past and therefore have higher relative un
certainty about (RU), which is predicted by the UCB algorithm, a form of 
directed exploration. The current study also found this effect. The prior 
studies also found evidence for V/TU (Thompson sampling, a sophisti
cated type of random sampling), and sometimes also for V (pure random 
sampling). In our study, the best-fitting model included V/TU and not V; 
however, models with just V or with both fit nearly as well (Gershman, 
2018, 2019). In summary, though there is some uncertainty about V vs. 
V/TU, the current results clearly agree with the prior studies in that 
people use RU, and indicates that similar exploratory behaviors are 
engaged both when artificial outcomes are modelled as well as real 
world scenarios with higher stakes outcomes. 

Additionally, participants exhibited a strong tendency to alternate 
(generating the largest effect size in the model). We posit that alterna
tion can be viewed as a very simple directed exploration strategy. 
Alternation reduces relative uncertainty (and to some extent total un
certainty). In real-world settings, particularly where fluctuations in 
background symptomology can result in autocorrelation in treatment 
outcomes over time, alternation is a valuable strategy for other reasons; 
rapid switching allows more successful decoupling of treatment efficacy 
from background fluctuations in pain (Rottman, 2016), meaning that 
the best treatment can be selected in the long run. In fact, during con
ditioning, pain ratings changed (demonstrated by positive autocorrela
tion in pain regressions), even though the average shocks for each option 
remained stable. In situations with positive autocorrelation of baseline 
symptomology alternation is especially beneficial for discriminating 
between treatments (Rottman, 2016). 

Compared to research with artificial outcomes, a high switch rate of 
this type is unusual (Rottman, 2016). This could be for several reasons. 
First, the propensity to switch may be accentuated when treatment 
outcomes are biologically-relevant. To the extent that alternation is 

useful, this could reflect a stronger motivation to achieve the desirable 
outcome (less pain). Another possibility is that fine gradations of pain 
could be more difficult to discriminate than clear numerical outcomes 
(e.g. points), which could encourage alternation to help them compare 
experiences. Third, there was no ‘horizon’ in the current study; no in
formation regarding trial numbers and when the study would end was 
provided. The horizon was omitted to correspond to a class of ‘infinite- 
horizon’ real world situations (e.g., unknown duration of a disease 
process). When a horizon exists, the optimal strategy is to exploit leading 
up to the end of testing (Lee et al., 2011; Steyvers et al., 2009; Wilson 
et al., 2014). The lack of a horizon could therefore have encouraged 
exploration of options, given that termination of the experiment could 
not be predicted, leading to the high alternation rate. 

4.4. Limitations 

There is one primary limitation and future direction. In the theo
retical model there are links from shock ⟶ pain ⟶ expectancy ⟶ 
choice and we did test the influence of shock on pain, and pain on ex
pectancy. However, when modelling choice, the V measure (difference 
in outcomes for one choice vs. another) was calculated from the shocks 
not the rated expectancies. In fact, the research focusing on choice in 
explore-exploit tasks that we built upon did not directly investigate how 
expectancies are developed, though there are separate lines of research 
on this question (e.g. Bornstein et al., 2017; Rottman, 2016; Worthy & 
Todd Maddox, 2014). Ideally to study this question participants would 
rate their expectancies for each option after every experience, or, at least 
rate their expectancy for the chosen option after experiencing it. In line 
with placebo research, in our study participants rated their expectancy 
only for the chosen option before experiencing it, which makes it easy to 
study the expectancy ⟶ pain link but difficult to study the pain ⟶ 
expectancy link, and we did not attempt to study the expectancy ⟶ 
choice link directly because it would have required imputing expec
tancies at periods of time that they were not directly measured. In sum, if 
future research measures expectancy for all choices after each outcome, 
it would permit a stronger test of these links. 

4.5. Summary 

In summary, the results are consistent with prior findings that par
ticipants use both directed and random sampling in explore-exploit 
situations, and extends those findings to physiologically-relevant situa
tions. In line with prior research, these findings can be taken as evidence 
of a rational learning process. However, consistent with research on the 
placebo effect, we also found evidence of a secondary process in which 
experiences of pain were influenced by prior expectations that devel
oped during the explore-exploit process. Further, results demonstrate 
that this expectancy-based modulation of pain during the learning 
process can impact the placebo effect at test. This extends the placebo 
literature, demonstrating that the recursive association between pain 
and expectancy is not isolated to the test phase, but also the explore- 
exploit literature, demonstrating that directed exploration occurs even 
when expectancies influence the outcome experienced. 
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